# Singapore's Approach to Building Trustworthy Al

# YEONG, Zee Kin

Assistant Chief Executive (Data Innovation & Protection) Infocomm Media Development Authority

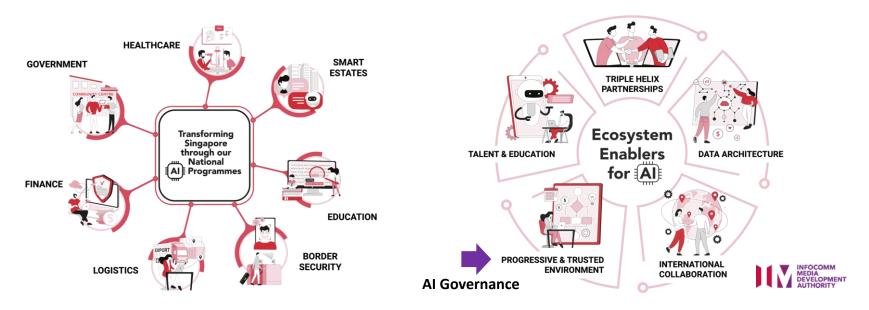
Deputy Commissioner Personal Data Protection Commission Singapore



- Singapore's National AI Strategy (NAIS)
- Different responses to AI risks to build consumer trust/help industry meet int'l regs/standards
- Singapore's current approach to Al governance to support NAIS
- Latest development in AI governance testing
- Enabling use of data and PET for AI development

# Presentation Overview




# Al Governance Supports Singapore's National Al Strategy (NAIS)

## VISION

By 2030, Singapore will be a leader in developing and deploying scalable, impactful AI solutions, in key sectors of high value and relevance to our citizens and businesses

# 7 NATIONAL AI PROJECTS

# **5 ECOSYSTEM ENABLERS**



# **Different Responses to AI Risks**

To build consumer trust, help biz meet intl regs/standards

# **Consumer concerns** with autonomous decision making by AI

### **BIAS & UNINTENDED DISCRIMINATION**

Unfavorable decisions about individuals which may affect their lives / livelihoods

#### HARM

Harm resulting from AI misbehaving or non-proper use of AI

### RECOURSE

Channels for review of decision, or ability to obtain compensation (liability)

**Governments** inching towards regulations (soft and hard options)

### **PRINCIPLES & GUIDELINES**

- Ethical Principles: e.g. Australia, South Korea, China
- Guidance: e.g. Singapore, Japan, US

## REGULATIONS

- EU: high-risk AI systems to undergo conformance assessment
- China: law to regulate automated decision making

## INT'L PLATFORMS

- OECD Principles on AI
- UNESCO Recommendation on Ethics
  of AI
- GPAI responsible AI practices

**Industry** demonstrating responsible AI practices to regulators & stakeholders

## **AI GOVERNANCE TOOLS**

- Big Tech: E.g. IBM Fairness 360, Google What-If, Microsoft Fairlearn
- Start-ups: E.g. Truera, Credo AI, 2021.AI, Tookitaki

## **STANDARDS**

- MAS Veritas
- NIST AI Risk Management F/w
- ISO SC 42, IEEE P7000 series, Ethics Certification Program for Autonomous and Intelligent Systems (ECPAIS)



# Singapore's Current Approach to Al Governance

Soft regs - voluntary guidance on trustworthy AI implementation

- Industry voluntary adoption of responsible AI with detailed government guidance
  - Accountability-based approach to engender trust
  - Takes AI ethics into corporate governance, risk management and operational structures
  - Practical tools for organistions

# Government guidance

- Model AI Governance Framework (2<sup>nd</sup> edition)
- Implementation & Self-Assessment Guide for Organisations
- 2 volumes of Compendium of Use Cases
- Multi-stakeholder approach
  - Living documents that will evolve with tech development
  - Input and feedback from >60 companies of different sizes, from different sectors, locally and internationally
  - Worked with int'l organizations like WEF, OECD
  - Baseline for other sectors to build on



# Beyond guidance - A.I. Verify MVP Helps Companies be Transparent about AI

Framework & software tool to conduct objective, verifiable tests and record process checks

## INTERNATIONALLY-ALIGNED AI ETHICS PRINCIPLES CATEGORISED INTO 5 KEY AREAS CONCERNING AI SYSTEMS

#### TRANSPARENCY ON USE OF AI AND AI SYSTEMS

Ensuring consumer awareness on use and guality of AI systems

Transparency

#### UNDERSTANDING HOW AI MODEL REACHES DECISION

Ensuring AI operation/ results are explainable, accurate and consistent

Explainability Repeatability/Reproducibility

#### SAFETY & RESILIENCE OF AI SYSTEMS

Ensuring AI system is reliable and will not cause harm Security

Safety

Robustness

#### FAIRNESS/NO UNINTENDED DISCRIMINATION

Ensuring that use of AI does not unintentionally discriminate

Fairness Data governance

#### MANAGEMENT AND OVERSIGHT OF AI

Ensuring human accountability and control

- Accountability Human agency and oversight
- Inclusive growth, societal and environmental well-being

8 principles in MVP

### **KEY FEATURES**

- Cover key intl AI governance frameworks & guidelines
  - EU Ethics Guidelines for Trustworthy AI, OECD Recommendation on AI, SG Model Framework
- Validate companies' claims about AI systems' performance
  - Does not set ethical standards

## Single, integrated toolkit for self-test

- Ease of testing / recording process checks
- Mitigates companies' concern about of commercial sensitivity
- Working towards indep 3<sup>rd</sup> party testing svc

## Customised testing reports to be available for diff groups of stakeholders

 Internal management, external partners, regulators, customers

# **Scope of A.I. Verify tests**

| Principle                         | Technical Test                                                                                                                                             | Process Checks                                                                                                                                                                                                                   |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transparency                      |                                                                                                                                                            | Evidence (e.g., policy, comms collaterals) of providing appropriate<br>info to individuals who may be impacted by the AI system –<br>intended use, limitations, risk assessment (w/o comprising IP,<br>safety, system integrity) |
| Explainability                    | Factors contributing to AI model's output                                                                                                                  | Evidence of considerations given to choice of AI models                                                                                                                                                                          |
| Repeatability/<br>reproducibility |                                                                                                                                                            | Evidence of AI model provenance and data provenance                                                                                                                                                                              |
| Safety                            |                                                                                                                                                            | Evidence of materiality/risk assessments, identification/mitigation of known risks, evaluation of acceptable residual risks                                                                                                      |
| Robustness                        | Model performs as expected even when<br>encountering unexpected input                                                                                      | Evidence of review of factors that may affect the performance of AI model, including adversarial attack                                                                                                                          |
| Fairness                          | Protected/sensitive attributes specified by AI<br>system owner do not contribute to algo bias of<br>model by checking model output against<br>ground truth | Evidence of strategy for selecting fairness metrics, definition of sensitive attributes are consistent with legislation & corporate values                                                                                       |
| Accountability                    |                                                                                                                                                            | Evidence of clear internal governance mechanisms for proper management oversight of AI system's development/deployment                                                                                                           |
| Human agency & oversight          |                                                                                                                                                            | Evidence that AI system is designed in a way that will not reduce<br>human's ability to make decisions or to take control of the system<br>(e.g.,human-in-the-loop)                                                              |

# A.I. Verify International Pilot to help enhance MVP & build industry benchmarks

- Invite
  - Al system owners/developers to pilot MVP
    - Provide feedback
    - Co-create industry benchmarks
  - Technology solution providers to build capabilities in AI governance testing
  - Framework owners/developers to explore interoperability
- 40+ companies internationally have expressed in the pilot



# **Building AI Testing Community and sustainable Ecosystem**

- All international pilot participants are part of AI Testing Community
  - Regulators/policymakers to share early policy thinking and seek industry feedback
  - Use case-specific workshops to build benchmarks
- Build ecosystem to support AI governance testing
  - 3<sup>rd</sup>-party testing service providers
  - Advisory service providers/consultancies
  - Certification body/bodies
  - Research community/tech solution providers



# **Enabling AI development with 'Privacy Enhancing Technologies'**

- AI systems need data but growing challenges exist in data flow
  - Businesses concerned about losing competitive edge or risk of non-compliance if they share data
  - Public agencies and non-commercial entities holding sensitive data have stringent data governance policies which undercut their agility to adopt new AI solutions
  - Individuals can be hesitant to give consent for fear of losing privacy without fully knowing where the data is going or how it would be used
- **PET could enable <u>flow of insights</u> from data without disclosure of the data itself** e.g.
  - Identifying the <u>best features</u> for an AI model without revealing the full dataset
  - Tuning & training model weights of an AI model without pooling data centrally
  - Testing performance metrics of an AI solution on new but confidential dataset



# **Definition of PET**

- "PET" is an umbrella term for a group of technologies, no universal definition
- A subset of PETs are more mature



# **PET Use Cases and State of Adoption**

3 archetypes of commonly featured use case applications

## **1** Identify Common Users

- Outcome: Count size of consumer base common to two or more coys
- Examples:
  - Apple uses MPC to detect child abuse materials in iCloud images



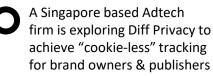
Temasek-led datathon to fuse public-private datasets



- A Singapore based mobility company and insurance firm wish to use to derive basic consumer insights
- Applicable PETs: Multiparty Computing, Anonymisation, Differential Privacy



# Add features to enrich data


- Outcome: A data model with more features to derive new insights
- Examples:



Google uses MPC to offer top ad buyers a custom Keyword Planner built on joint 1P data



DataCo (ANZ Bank) building MPC-based platform to build data models w/ airlines, retailers



• Applicable PETs: Differential Privacy, Multiparty Computing

# 3 Make more data available for AI

- Outcome: Develop an AI model by either obfuscating data before ingestion or by flowing model weights instead of data
- Examples:



**Relevant to AI development** 

Android device keyboards employ Fed Learning to train next word recommendation AI



A Financial services MNC tried HE on image data to see performance of an open source computer vision AI



A Canadian asset manager used MPC to access portfolio companies' data for its risk assessment AI

 Applicable PETs: Homomorphic Encryption, Fed Learning, Multiparty Computing

Deployed in production

Proof of Concept

At ideation

# IMDA/PDPC's PET Sandbox

- Catalyze adoption by gaining hands-on experience with PETs
- When applied to real-world use cases
- To understand technical and regulatory bounds with Proofs-of-Concept (POC)
  - 1. Use Case Owners
  - Singapore registered organisations
  - See delta value if the use case POC goes into production
  - May or may not have an existing solution provider
  - Submit essential details at go.gov.sg/ petsandbox

## 2. Key Requirements

- Use case falls under at least 1 of 3 types
- If selected, draft detailed proposal
- Demo to IMDA the POC use case within 6 months
- Regular discussions with IMDA to extract lessons about adoption

# 3. Access to Funding and Tech

- Up to 50% of the cost to scope and develop POC
- On reimbursement basis *after* demo of POC
- Linkup to PET solution
  providers if necessary

# 4. Regulatory Guidance

- Regular consultations to raise questions to PDPC about compliance
- Questions specific to PET use case



1

# Thank you



